Reference: Chou WL, et al. (2014) Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa. Plant Mol Biol 85(4-5):443-58

Reference Help

Abstract


Deadenylation, also called poly(A) tail shortening, is the first, rate-limiting step in the general cytoplasmic mRNA degradation in eukaryotic cells. The CCR4-NOT complex, containing the two key components carbon catabolite repressor 4 (CCR4) and CCR4-associated factor 1 (CAF1), is a major player in deadenylation. CAF1 belongs to the RNase D group in the DEDD superfamily, and is a protein conserved through evolution from yeast to humans and plants. Every higher plant, including Arabidopsis and rice, contains a CAF1 multigene family. In this study, we identified and cloned four OsCAF1 genes (OsCAF1A, OsCAF1B, OsCAF1G, and OsCAF1H) from rice. Four recombinant OsCAF1 proteins, rOsCAF1A, rOsCAF1B, rOsCAF1G, and rOsCAF1H, all exhibited 3'-5' exonuclease activity in vitro. Point mutations in the catalytic residues of each analyzed recombinant OsCAF1 proteins were shown to disrupt deadenylase activity. OsCAF1A and OsCAF1G mRNA were found to be abundant in the leaves of mature plants. Two types of OsCAF1B mRNA transcript were detected in an inverse expression pattern in various tissues. OsCAF1B was transient, induced by drought, cold, abscisic acid, and wounding treatments. OsCAF1H mRNA was not detected either under normal conditions or during most stress treatments, but only accumulated during heat stress. Four OsCAF1-reporter fusion proteins were localized in both the cytoplasm and nucleus. In addition, when green fluorescent protein fused with OsCAF1B, OsCAF1G, and OsCAF1H, respectively, fluorescent spots were observed in the nucleolus. OsCAF1B fluorescent fusion proteins were located in discrete cytoplasmic foci and fibers. We present evidences that OsCAF1B colocalizes with AtXRN4, a processing body marker, and AtKSS12, a microtubules maker, indicating that OsCAF1B is a component of the plant P-body and associate with microtubules. Our findings provide biochemical evidence that OsCAF1 proteins may be involved in the deadenylation in rice. The unique expression patterns of each OsCAF1 were observed in various tissues when undergoing abiotic stress treatments, implying that each CAF1 gene in rice plays a specific role in the development and stress response of a plant.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chou WL, Huang LF, Fang JC, Yeh CH, Hong CY, Wu SJ, Lu CA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference