Reference: Durand A, et al. (2013) Structure, assembly and dynamics of macromolecular complexes by single particle cryo-electron microscopy. J Nanobiotechnology 11 Suppl 1(Suppl 1):S4

Reference Help

Abstract


Background: Proteins in their majority act rarely as single entities. Multisubunit macromolecular complexes are the actors in most of the cellular processes. These nanomachines are hold together by weak protein-protein interactions and undergo functionally important conformational changes. TFIID is such a multiprotein complex acting in eukaryotic transcription initiation. This complex is first to be recruited to the promoter of the genes and triggers the formation of the transcription preinitiation complex involving RNA polymerase II which leads to gene transcription. The exact role of TFIID in this process is not yet understood.

Methods: Last generation electron microscopes, improved data collection and new image analysis tools made it possible to obtain structural information of biological molecules at atomic resolution. Cryo-electron microscopy of vitrified samples visualizes proteins in a fully hydrated, close to native state. Molecular images are recorded at liquid nitrogen temperature in low electron dose conditions to reduce radiation damage. Digital image analysis of these noisy images aims at improving the signal-to-noise ratio, at separating distinct molecular views and at reconstructing a three-dimensional model of the biological particle.

Results: Using these methods we showed the early events of an activated transcription initiation process. We explored the interaction of the TFIID coactivator with the yeast Rap1 activator, the transcription factor TFIIA and the promoter DNA. We demonstrated that TFIID serves as an assembly platform for transient protein-protein interactions, which are essential for transcription initiation.

Conclusions: Recent developments in electron microscopy have provided new insights into the structural organization and the dynamic reorganization of large macromolecular complexes. Examples of near-atomic resolutions exist but the molecular flexibility of macromolecular complexes remains the limiting factor in most case. Electron microscopy has the potential to provide both structural and dynamic information of biological assemblies in order to understand the molecular mechanisms of their functions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Durand A, Papai G, Schultz P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference