Reference: Barghash A and Helms V (2013) Transferring functional annotations of membrane transporters on the basis of sequence similarity and sequence motifs. BMC Bioinformatics 14:343

Reference Help

Abstract


Background: Membrane transporters catalyze the transport of small solute molecules across biological barriers such as lipid bilayer membranes. Experimental identification of the transported substrates is very tedious. Once a particular transport mechanism has been identified in one organism, it is thus highly desirable to transfer this information to related transporter sequences in different organisms based on bioinformatics evidence.

Results: We present a thorough benchmark at which level of sequence identity membrane transporters from Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana belong to the same families of the Transporter Classification (TC) system, and at what level these membrane transporters mediate the transport of the same substrate. We found that two membrane transporter sequences from different organisms that are aligned with normalized BLAST expectation value better than E-value 1e-8 are highly likely to belong to the same TC family (F-measure around 90%). Enriched sequence motifs identified by MEME at thresholds below 1e-12 support accurate classification into TC families for about two thirds of the sequences (F-measure 80% and higher). For the comparison of transported substrates, we focused on the four largest substrate classes of amino acids, sugars, metal ions, and phosphate. At similar identity thresholds, the nature of the transported substrates was more divergent (F-measure 40--75% at the same thresholds) than the TC family membership.

Conclusions: We suggest an acceptable threshold of 1e-8 for BLAST and HMMER where at least three quarters of the sequences are classified according to the TC system with a reasonably high accuracy. Researchers who wish to apply these thresholds in their studies should multiply these thresholds by the size of the database they search against. Our findings should be useful to those who wish to transfer transporter functional annotations across species.

Reference Type
Comparative Study | Journal Article
Authors
Barghash A, Helms V
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference