Reference: Lahudkar S, et al. (2014) A Novel Role for Cet1p mRNA 5'-Triphosphatase in Promoter Proximal Accumulation of RNA Polymerase II in Saccharomyces cerevisiase. Genetics 196(1):161-76

Reference Help

Abstract


Yeast mRNA 5'-triphosphatase, Cet1p, recognizes phosphorylated-RNA polymerase II as a component of capping machinery via Ceg1p for cotranscriptional formation of mRNA cap structure that recruits cap-binding complex (CBC) and protects mRNA from exonucleases. Here, we show that the accumulation of RNA polymerase II at the promoter proximal site of ADH1 is significantly enhanced in the absence of Cet1p. Similar results are also found at other genes. Cet1p is recruited to the 5' end of the coding sequence, and its absence impairs mRNA capping, and hence CBC recruitment. However, such an impaired recruitment of CBC does not enhance promoter proximal accumulation of RNA polymerase II. Thus, Cet1p specifically lowers the accumulation of RNA polymerase II at the promoter proximal site independently of mRNA cap structure or CBC. Further, we show that Cet1p's N-terminal domain, which is not involved in mRNA capping, decreases promoter proximal accumulation of RNA polymerase II. An accumulation of RNA polymerase II at the promoter proximal site in the absence of Cet1p's N-terminal domain is correlated with reduced transcription. Collectively, our results demonstrate a novel role of Cet1p in regulation of promoter proximal accumulation of RNA polymerase II independently of mRNA capping activity, and hence transcription in vivo.

Reference Type
Journal Article
Authors
Lahudkar S, Durairaj G, Uprety B, Bhaumik SR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference