Reference: Sajesh BV, et al. (2013) Synthetic lethal targeting of superoxide dismutase 1 selectively kills RAD54B-deficient colorectal cancer cells. Genetics 195(3):757-67

Reference Help

Abstract


Synthetic lethality is a rational approach to identify candidate drug targets for selective killing of cancer cells harboring somatic mutations that cause chromosome instability (CIN). To identify a set of the most highly connected synthetic lethal partner genes in yeast for subsequent testing in mammalian cells, we used the entire set of 692 yeast CIN genes to query the genome-wide synthetic lethal datasets. Hierarchical clustering revealed a highly connected set of synthetic lethal partners of yeast genes whose human orthologs are somatically mutated in colorectal cancer. Testing of a small matrix of synthetic lethal gene pairs in mammalian cells suggested that members of a pathway that remove reactive oxygen species that cause DNA damage would be excellent candidates for further testing. We show that the synthetic lethal interaction between budding yeast rad54 and sod1 is conserved within a human colorectal cancer context. Specifically, we demonstrate RAD54B-deficient cells are selectively killed relative to controls via siRNA-based silencing and chemical inhibition and further demonstrate that this interaction is conserved in an unrelated cell type. We further show that the DNA double strand breaks, resulting from increased reactive oxygen species following SOD1 inhibition, persist within the RAD54B-deficient cells and result in apoptosis. Collectively, these data identify SOD1 as a novel candidate cancer drug target and suggest that SOD1 inhibition may have broad-spectrum applicability in a variety of tumor types exhibiting RAD54B deficiencies.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sajesh BV, Bailey M, Lichtensztejn Z, Hieter P, McManus KJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference