Reference: Harsch MJ, et al. (2013) New precursor of 3-mercaptohexan-1-ol in grape juice: thiol-forming potential and kinetics during early stages of must fermentation. J Agric Food Chem 61(15):3703-13

Reference Help

Abstract


Two volatile thiols, 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), are key aroma impact compounds in many young white wines, especially of the variety Sauvignon blanc (SB). Although great effort has been invested to identify their precursors in recent years, the origin of the majority of 3MH and 3MHA generated during wine fermentation still cannot be explained. Here we demonstrate that supplying an external source of hydrogen sulfide to grape juice hugely increases its thiol-forming potential. We further describe the discovery of (E)-2-hexen-1-ol as an additional new thiol precursor and demonstrate that it possesses, together with (E)-2-hexenal, an immense thiol-forming potential during fermentation. Both C6-compounds are extremely rapidly metabolized by yeast during the first hours after inoculation, even under commercial conditions, and can be interconverted during this phase depending on their initial concentration in the grape juice. Spiking grape juice with additional acetaldehyde greatly enhanced the (E)-2-hexen-1-ol to (E)-2-hexenal conversion rate. Delaying the metabolization of the two unsaturated C6-thiol precursors by yeast, at the same time as increasing hydrogen sulfide production early in fermentation, opens up a great opportunity to tap into this enormous potential 3MH and 3MHA source in grape juice and extends the possibility of thiol production to other non-grape-based alcoholic beverages as well.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Harsch MJ, Benkwitz F, Frost A, Colonna-Ceccaldi B, Gardner RC, Salmon JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference