Reference: Hutchins AP, et al. (2013) The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes. Mol Biol Evol 30(5):1172-87

Reference Help

Abstract


Reversible protein ubiquitination regulates virtually all known cellular activities. Here, we present a quantitatively evaluated and broadly applicable method to predict eukaryotic ubiquitinating enzymes (UBE) and deubiquitinating enzymes (DUB) and its application to 50 distinct genomes belonging to four of the five major phylogenetic supergroups of eukaryotes: unikonts (including metazoans, fungi, choanozoa, and amoebozoa), excavates, chromalveolates, and plants. Our method relies on a collection of profile hidden Markov models, and we demonstrate its superior performance (coverage and classification accuracy >99%) by identifying approximately 25% and approximately 35% additional UBE and DUB genes in yeast and human, which had not been reported before. In yeast, we predict 85 UBE and 24 DUB genes, for 814 UBE and 107 DUB genes in the human genome. Most UBE and DUB families are present in all eukaryotic lineages, with plants and animals harboring massively enlarged repertoires of ubiquitin ligases. Unicellular organisms, on the other hand, typically harbor less than 300 UBEs and less than 40 DUBs per genome. Ninety-one UBE/DUB genes are orthologous across all four eukaryotic supergroups, and these likely represent a primordial core of enzymes of the ubiquitination system probably dating back to the first eukaryotes approximately 2 billion years ago. Our genome-wide predictions are available through the Database of Ubiquitinating and Deubiquitinating Enzymes (www.DUDE-db.org), where users can also perform advanced sequence and phylogenetic analyses and submit their own predictions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hutchins AP, Liu S, Diez D, Miranda-Saavedra D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference