Reference: Kim SR, et al. (2013) Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation. J Biotechnol 164(1):105-11

Reference Help

Abstract


Saccharomyces cerevisiae can be engineered for xylose fermentation through introduction of wild type or mutant genes (XYL1/XYL1 (R276H), XYL2, and XYL3) coding for xylose metabolic enzymes from Scheffersomyces stipitis. The resulting engineered strains, however, often yielded undesirable phenotypes such as slow xylose assimilation and xylitol accumulation. In this study, we performed the mating of two engineered strains that exhibit suboptimal xylose-fermenting phenotypes in order to develop an improved xylose-fermenting diploid strain. Specifically, we obtained two engineered haploid strains (YSX3 and SX3). The YSX3 strain consumed xylose rapidly and produced a lot of xylitol. On the contrary, the SX3 strain consumed xylose slowly with little xylitol production. After converting the mating type of SX3 from alpha to a, the resulting strain (SX3-2) was mated with YSX3 to construct a heterozygous diploid strain (KSM). The KSM strain assimilated xylose (0.25gxyloseh(-1)gcells(-1)) as fast as YSX3 and accumulated a small amount of xylitol (0.03ggxylose(-1)) as low as SX3, resulting in an improved ethanol yield (0.27ggxylose(-1)). We found that the improvement in xylose fermentation by the KSM strain was not because of heterozygosity or genome duplication but because of the complementation of the two xylose-metabolic pathways. This result suggested that mating of suboptimal haploid strains is a promising strategy to develop engineered yeast strains with improved xylose fermenting capability.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kim SR, Lee KS, Kong II, Lesmana A, Lee WH, Seo JH, Kweon DH, Jin YS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference