Reference: Carr M, et al. (2012) Evolutionary genomics of transposable elements in Saccharomyces cerevisiae. PLoS One 7(11):e50978

Reference Help

Abstract


Saccharomyces cerevisiae is one of the premier model systems for studying the genomics and evolution of transposable elements. The availability of the S. cerevisiae genome led to unprecedented insights into its five known transposable element families (the LTR retrotransposons Ty1-Ty5) in the years shortly after its completion. However, subsequent advances in bioinformatics tools for analysing transposable elements and the recent availability of genome sequences for multiple strains and species of yeast motivates new investigations into Ty evolution in S. cerevisiae. Here we provide a comprehensive phylogenetic and population genetic analysis of all Ty families in S. cerevisiae based on a systematic re-annotation of Ty elements in the S288c reference genome. We show that previous annotation efforts have underestimated the total copy number of Ty elements for all known families. In addition, we identify a new family of Ty3-like elements related to the S. paradoxus Ty3p which is composed entirely of degenerate solo LTRs. Phylogenetic analyses of LTR sequences identified three families with short-branch, recently active clades nested among long branch, inactive insertions (Ty1, Ty3, Ty4), one family with essentially all recently active elements (Ty2) and two families with only inactive elements (Ty3p and Ty5). Population genomic data from 38 additional strains of S. cerevisiae show that the majority of Ty insertions in the S288c reference genome are fixed in the species, with insertions in active clades being predominantly polymorphic and insertions in inactive clades being predominantly fixed. Finally, we use comparative genomic data to provide evidence that the Ty2 and Ty3p families have arisen in the S. cerevisiae genome by horizontal transfer. Our results demonstrate that the genome of a single individual contains important information about the state of TE population dynamics within a species and suggest that horizontal transfer may play an important role in shaping the genomic diversity of transposable elements in unicellular eukaryotes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Carr M, Bensasson D, Bergman CM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference