Reference: Bonissone S, et al. (2013) N-terminal protein processing: a comparative proteogenomic analysis. Mol Cell Proteomics 12(1):14-28

Reference Help

Abstract


N-terminal methionine excision (NME) and N-terminal acetylation (NTA) are two of the most common protein post-translational modifications. NME is a universally conserved activity and a highly specific mechanism across all life forms. NTA is very common in eukaryotes but occurs rarely in prokaryotes. By analyzing data sets from yeast, mammals and bacteria (including 112 million spectra from 57 bacterial species), the largest comparative proteogenomics study to date, it is shown that previous assumptions/perceptions about the specificity and purposes of NME are not entirely correct. Although NME, through the universal enzymatic specificity of the methionine aminopeptidases, results in the removal of the initiator Met in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val, the comparative genomic analyses suggest that this specificity may vary modestly in some organisms. In addition, the functional role of NME may be primarily to expose Ala and Ser rather than all seven of these residues. Although any of this group provide "stabilizing" N termini in the N-end rule, and de facto leave the remaining 13 amino acid types that are classed as "destabilizing" (in higher eukaryotes) protected by the initiator Met, the conservation of NME-substrate proteins through evolution suggests that the other five are not crucially important for proteins with these residues in the second position. They are apparently merely inconsequential players (their function is not affected by NME) that become exposed because their side chains are smaller or comparable to those of Ala and Ser. The importance of exposing mainly two amino acids at the N terminus, i.e. Ala and Ser, is unclear but may be related to NTA or other post-translational modifications. In this regard, these analyses also reveal that NTA is more prevalent in some prokaryotes than previously appreciated.

Reference Type
Comparative Study | Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Bonissone S, Gupta N, Romine M, Bradshaw RA, Pevzner PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference