Reference: Guillaume F and Otto SP (2012) Gene functional trade-offs and the evolution of pleiotropy. Genetics 192(4):1389-409

Reference Help

Abstract


Pleiotropy is the property of genes affecting multiple functions or characters of an organism. Genes vary widely in their degree of pleiotropy, but this variation is often considered a by-product of their evolutionary history. We present a functional theory of how pleiotropy may itself evolve. We consider genes that contribute to two functions, where contributing more to one function detracts from allocation to the second function. We show that whether genes become pleiotropic or specialize on a single function depends on the nature of trade-offs as gene activities contribute to different traits and on how the functionality of these traits affects fitness. In general, when a gene product can perform well at two functions, it evolves to do so, but not when pleiotropy would greatly disrupt each function. Consequently, reduced pleiotropy should often evolve, with genes specializing on the trait that is currently more important to fitness. Even when pleiotropy does evolve, not all genes are expected to become equally pleiotropic; genes with higher levels of expression are more likely to evolve greater pleiotropy. For the case of gene duplicates, we find that perfect subfunctionalization evolves only under stringent conditions. More often, duplicates are expected to maintain a certain degree of functional redundancy, with the gene contributing more to trait functionality evolving the highest degree of pleiotropy. Gene product interactions can facilitate subfunctionalization, but whether they do so depends on the curvature of the fitness surface. Finally, we find that stochastic gene expression favors pleiotropy by selecting for robustness in fitness components.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Guillaume F, Otto SP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference