Reference: Bajić D and Poyatos JF (2012) Balancing noise and plasticity in eukaryotic gene expression. BMC Genomics 13:343

Reference Help

Abstract


Background: Coupling the control of expression stochasticity (noise) to the ability of expression change (plasticity) can alter gene function and influence adaptation. A number of factors, such as transcription re-initiation, strong chromatin regulation or genome neighboring organization, underlie this coupling. However, these factors do not necessarily combine in equivalent ways and strengths in all genes. Can we identify then alternative architectures that modulate in distinct ways the linkage of noise and plasticity?

Results: Here we first show that strong chromatin regulation, commonly viewed as a source of coupling, can lead to plasticity without noise. The nature of this regulation is relevant too, with plastic but noiseless genes being subjected to general activators whereas plastic and noisy genes experience more specific repression. Contrarily, in genes exhibiting poor transcriptional control, it is translational efficiency what separates noise from plasticity, a pattern related to transcript length. This additionally implies that genome neighboring organization -as modifier- appears only effective in highly plastic genes. In this class, we confirm bidirectional promoters (bipromoters) as a configuration capable to reduce coupling by abating noise but also reveal an important trade-off, since bipromoters also decrease plasticity. This presents ultimately a paradox between intergenic distances and modulation, with short intergenic distances both associated and disassociated to noise at different plasticity levels.

Conclusions: Balancing the coupling among different types of expression variability appears as a potential shaping force of genome regulation and organization. This is reflected in the use of different control strategies at genes with different sets of functional constraints.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bajić D, Poyatos JF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference