Reference: Ho HJ, et al. (2012) Parametric modeling of cellular state transitions as measured with flow cytometry. BMC Bioinformatics 13 Suppl 5(Suppl 5):S5

Reference Help

Abstract


Background: Gradual or sudden transitions among different states as exhibited by cell populations in a biological sample under particular conditions or stimuli can be detected and profiled by flow cytometric time course data. Often such temporal profiles contain features due to transient states that present unique modeling challenges. These could range from asymmetric non-Gaussian distributions to outliers and tail subpopulations, which need to be modeled with precision and rigor.

Results: To ensure precision and rigor, we propose a parametric modeling framework StateProfiler based on finite mixtures of skew t-Normal distributions that are robust against non-Gaussian features caused by asymmetry and outliers in data. Further, we present in StateProfiler a new greedy EM algorithm for fast and optimal model selection. The parsimonious approach of our greedy algorithm allows us to detect the genuine dynamic variation in the key features as and when they appear in time course data. We also present a procedure to construct a well-fitted profile by merging any redundant model components in a way that minimizes change in entropy of the resulting model. This allows precise profiling of unusually shaped distributions and less well-separated features that may appear due to cellular heterogeneity even within clonal populations.

Conclusions: By modeling flow cytometric data measured over time course and marker space with StateProfiler, specific parametric characteristics of cellular states can be identified. The parameters are then tested statistically for learning global and local patterns of spatio-temporal change. We applied StateProfiler to identify the temporal features of yeast cell cycle progression based on knockout of S-phase triggering cyclins Clb5 and Clb6, and then compared the S-phase delay phenotypes due to differential regulation of the two cyclins. We also used StateProfiler to construct the temporal profile of clonal divergence underlying lineage selection in mammalian hematopoietic progenitor cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ho HJ, Lin TI, Chang HH, Haase SB, Huang S, Pyne S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference