Reference: Kurita T, et al. (2012) Action of multiple endoplasmic reticulum chaperon-like proteins is required for proper folding and polarized localization of Kre6 protein essential in yeast cell wall β-1,6-glucan synthesis. J Biol Chem 287(21):17415-17424

Reference Help

Abstract


Saccharomyces cerevisiae Kre6 is a type II membrane protein essential for cell wall β-1,6-glucan synthesis. Recently we reported that the majority of Kre6 is in the endoplasmic reticulum (ER), but a significant portion of Kre6 is found in the plasma membrane of buds, and this polarized appearance of Kre6 is required for β-1,6-glucan synthesis. An essential membrane protein, Keg1, and ER chaperon Rot1 bind to Kre6. In this study we found that in mutant keg1-1 cells, accumulation of Kre6 at the buds is diminished, binding of Kre6 to Keg1 is decreased, and Kre6 becomes susceptible to ER-associated degradation (ERAD), which suggests Keg1 participates in folding and transport of Kre6. All mutants of the calnexin cycle member homologues (cwh41, rot2, kre5, and cne1) showed defects in β-1,6-glucan synthesis, although the calnexin chaperon system is considered not functional in yeast. We found synthetic defects between them and keg1-1, and Cne1 co-immunoprecipitated with Keg1 and Kre6. A stronger binding of Cne1 to Kre6 was detected when two glucosidases (Cwh41 and Rot2) that remove glucose on N-glycan were functional. Skn1, a Kre6 homologue, was not detected by immunofluorescence in the wild type yeast, but in kre6Δ cells it became detectable and behaved like Kre6. In conclusion, the action of multiple ER chaperon-like proteins is required for proper folding and localization of Kre6 and probably Skn1 to function in β-1,6-glucan synthesis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kurita T, Noda Y, Yoda K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference