Reference: Jol SJ, et al. (2012) System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Comput Biol 8(3):e1002415

Reference Help

Abstract


One of the most obvious phenotypes of a cell is its metabolic activity, which is defined by the fluxes in the metabolic network. Although experimental methods to determine intracellular fluxes are well established, only a limited number of fluxes can be resolved. Especially in eukaryotes such as yeast, compartmentalization and the existence of many parallel routes render exact flux analysis impossible using current methods. To gain more insight into the metabolic operation of S. cerevisiae we developed a new computational approach where we characterize the flux solution space by determining elementary flux modes (EFMs) that are subsequently classified as thermodynamically feasible or infeasible on the basis of experimental metabolome data. This allows us to provably rule out the contribution of certain EFMs to the in vivo flux distribution. From the 71 million EFMs in a medium size metabolic network of S. cerevisiae, we classified 54% as thermodynamically feasible. By comparing the thermodynamically feasible and infeasible EFMs, we could identify reaction combinations that span the cytosol and mitochondrion and, as a system, cannot operate under the investigated glucose batch conditions. Besides conclusions on single reactions, we found that thermodynamic constraints prevent the import of redox cofactor equivalents into the mitochondrion due to limits on compartmental cofactor concentrations. Our novel approach of incorporating quantitative metabolite concentrations into the analysis of the space of all stoichiometrically feasible flux distributions allows generating new insights into the system-level operation of the intracellular fluxes without making assumptions on metabolic objectives of the cell.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Jol SJ, Kümmel A, Terzer M, Stelling J, Heinemann M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference