Reference: Li H, et al. (2011) Learning the structure of gene regulatory networks from time series gene expression data. BMC Genomics 12 Suppl 5:S13

Reference Help

Abstract


BACKGROUND: Dynamic Bayesian Network (DBN) is an approach widely used for reconstruction of gene regulatory networks from time-series microarray data. Its performance in network reconstruction depends on a structure learning algorithm. REVEAL (REVerse Engineering ALgorithm) is one of the algorithms implemented for learning DBN structure and used to reconstruct gene regulatory networks (GRN). However, the two-stage temporal Bayes network (2TBN) structure of DBN that specifies correlation between time slices cannot be obtained by score metrics used in REVEAL. METHODS: In this paper, we study a more sophisticated score function for DBN first proposed by Nir Friedman for stationary DBNs structure learning of both initial and transition networks but has not yet been used for reconstruction of GRNs. We implemented Friedman's Bayesian Information Criterion (BIC) score function, modified K2 algorithm to learn Dynamic Bayesian Network structure with the score function and tested the performance of the algorithm for GRN reconstruction with synthetic time series gene expression data generated by GeneNetWeaver and real yeast benchmark experiment data. RESULTS: We implemented an algorithm for DBN structure learning with Friedman's score function, tested it on reconstruction of both synthetic networks and real yeast networks and compared it with REVEAL in the absence or presence of preprocessed network generated by Zou&Conzen's algorithm. By introducing a stationary correlation between two consecutive time slices, Friedman's score function showed a higher precision and recall than the naive REVEAL algorithm. CONCLUSIONS: Friedman's score metrics for DBN can be used to reconstruct transition networks and has a great potential to improve the accuracy of gene regulatory network structure prediction with time series gene expression datasets.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Li H, Wang N, Gong P, Perkins EJ, Zhang C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence