Reference: De Vos D, et al. (2011) How molecular competition influences fluxes in gene expression networks. PLoS One 6(12):e28494

Reference Help

Abstract


Often, in living cells different molecular species compete for binding to the same molecular target. Typical examples are the competition of genes for the transcription machinery or the competition of mRNAs for the translation machinery. Here we show that such systems have specific regulatory features and how they can be analysed. We derive a theory for molecular competition in parallel reaction networks. Analytical expressions for the response of network fluxes to changes in the total competitor and common target pools indicate the precise conditions for ultrasensitivity and intuitive rules for competitor strength. The calculations are based on measurable concentrations of the competitor-target complexes. We show that kinetic parameters, which are usually tedious to determine, are not required in the calculations. Given their simplicity, the obtained equations are easily applied to networks of any dimension. The new theory is illustrated for competing sigma factors in bacterial transcription and for a genome-wide network of yeast mRNAs competing for ribosomes. We conclude that molecular competition can drastically influence the network fluxes and lead to negative response coefficients and ultrasensitivity. Competitors that bind a large fraction of the target, like bacterial σ(70), tend to influence competing pathways strongly. The less a competitor is saturated by the target, the more sensitive it is to changes in the concentration of the target, as well as to other competitors. As a consequence, most of the mRNAs in yeast turn out to respond ultrasensitively to changes in ribosome concentration. Finally, applying the theory to a genome-wide dataset we observe that high and low response mRNAs exhibit distinct Gene Ontology profiles.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
De Vos D, Bruggeman FJ, Westerhoff HV, Bakker BM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference