Reference: Ashby MN and Edwards PA (1990) Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J Biol Chem 265(22):13157-64

Reference Help

Abstract


The assembly of a polyisoprenoid side chain and its transfer to para-hydroxybenzoate are the first two steps of coenzyme Q biosynthesis. In yeast these reactions are catalyzed by hexaprenyl pyrophosphate synthetase and PHB:polyprenyltransferase, respectively. We have screened nine complementation groups of yeast coenzyme Q mutants for the activities of these two enzymes and found two strains deficient in either activity. The strain deficient in hexaprenyl pyrophosphate synthetase activity, C296-LH3, is complemented by the plasmid pG3/T1. When C296-LH3 was transformed with a shuttle vector containing a 2,187-base pair fragment from the genomic insert of pG3/T1, both glycerol growth and hexaprenyl pyrophosphate synthetase activity were restored. The activity of the latter enzyme was higher than that seen in wild-type yeast. The increase in activity could be attributed to a gene dosage effect of the multi-copy plasmid. A 1,419-base pair open reading frame encoding a 52,560-dalton protein was found on the genomic fragment. The size of the RNA transcript and the location of transcriptional initiation indicate that the entire open reading frame is contained within the mRNA. Comparison of the hexaprenyl pyrophosphate synthetase amino acid sequence with amino acid sequences from the related enzyme farnesyl pyrophosphate synthetase show the presence of three highly conserved domains. Within two of the domains is an aspartate-rich motif found invariantly in the amino acid sequences of farnesyl pyrophosphate synthetase from three species and the hexaprenyl pyrophosphate synthetase amino acid sequence reported here. These aspartic acid motifs may comprise binding sites for the allylic and homoallylic substrates. The hydrophobicity profiles of the hexaprenyl pyrophosphate synthetase sequence and the farnesyl pyrophosphate synthetase sequence from rat appear similar. Furthermore, the hydrophobicity correlation coefficient of the comparison of these two sequences indicate with a high degree of confidence (p less than 0.001) that the two proteins will fold into similar three-dimensional structures.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Ashby MN, Edwards PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference