Reference: Foss EJ, et al. (2011) Genetic variation shapes protein networks mainly through non-transcriptional mechanisms. PLoS Biol 9(9):e1001144

Reference Help

Abstract


Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Foss EJ, Radulovic D, Shaffer SA, Goodlett DR, Kruglyak L, Bedalov A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference