Reference: Wernette CM, et al. (1990) Purification of a site-specific endonuclease, I-Sce II, encoded by intron 4 alpha of the mitochondrial coxI gene of Saccharomyces cerevisiae. J Biol Chem 265(31):18976-82

Reference Help

Abstract


We have purified to near homogeneity a site-specific, double-stranded DNA endonuclease (I-Sce II) encoded by intron 4 alpha (aI4 alpha) of the yeast mitochondrial coxI gene. Our purification starts with a high salt extract of mitochondria isolated from a yeast strain that overproduces the enzyme because of a block in splicing of aI4 alpha. The final step of purification is an affinity column consisting of covalently bound double-stranded DNA multimers of a synthetic sequence, 5'-TTGGTCATCCAGAAGTAT-3', which contains the I-Sce II cleavage/recognition site. Typical yields of enzyme are 3-5% with a specific activity of approximately 500,000 units/mg, where 1 unit of activity cleaves 50 ng of DNA substrate/h at 30 degrees C. I-Sce II has a monomer molecular mass of 31 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Active enzyme purifies as a 55-kDa species, which we presume to be a homodimer. I-Sce II monomer comigrates with an in vivo synthesized mitochondrial translation product made in the strain that overproduces the enzyme. We conclude that I-Sce II is derived by proteolytic processing of a precursor polypeptide, p62, encoded by an in-frame fusion of coxI exons 1-4 with the downstream aI4 alpha reading frame. I-Sce II is most active at pH 7.5 and at 20-30 degrees C. Endonuclease activity is sensitive to salt and is dependent upon Mg2+ or Mn2+, but is unaffected by inclusion of ATP or GTP. I-Sce II is the first intron-encoded protein to be purified and characterized from yeast mitochondria.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wernette CM, Saldahna R, Perlman PS, Butow RA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference