Reference: Lewis JA, et al. (2010) Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186(4):1197-205

Reference Help

Abstract


Ethanol production from lignocellulosic biomass holds promise as an alternative fuel. However, industrial stresses, including ethanol stress, limit microbial fermentation and thus prevent cost competitiveness with fossil fuels. To identify novel engineering targets for increased ethanol tolerance, we took advantage of natural diversity in wild Saccharomyces cerevisiae strains. We previously showed that an S288c-derived lab strain cannot acquire higher ethanol tolerance after a mild ethanol pretreatment, which is distinct from other stresses. Here, we measured acquired ethanol tolerance in a large panel of wild strains and show that most strains can acquire higher tolerance after pretreatment. We exploited this major phenotypic difference to address the mechanism of acquired ethanol tolerance, by comparing the global gene expression response to 5% ethanol in S288c and two wild strains. Hundreds of genes showed variation in ethanol-dependent gene expression across strains. Computational analysis identified several transcription factor modules and known coregulated genes as differentially expressed, implicating genetic variation in the ethanol signaling pathway. We used this information to identify genes required for acquisition of ethanol tolerance in wild strains, including new genes and processes not previously linked to ethanol tolerance, and four genes that increase ethanol tolerance when overexpressed. Our approach shows that comparative genomics across natural isolates can quickly identify genes for industrial engineering while expanding our understanding of natural diversity.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Lewis JA, Elkon IM, McGee MA, Higbee AJ, Gasch AP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference