Reference: Jiao X, et al. (2010) Identification of a quality-control mechanism for mRNA 5'-end capping. Nature 467(7315):608-11

Reference Help

Abstract


The 7-methylguanosine cap structure at the 5' end of eukaryotic messenger RNAs is a critical determinant of their stability and translational efficiency. It is generally believed that 5'-end capping is a constitutive process that occurs during mRNA maturation and lacks the need for a quality-control mechanism to ensure its fidelity. We recently reported that the yeast Rai1 protein has pyrophosphohydrolase activity towards mRNAs lacking a 5'-end cap. Here we show that, in vitro as well as in yeast cells, Rai1 possesses a novel decapping endonuclease activity that can also remove the entire cap structure dinucleotide from an mRNA. This activity is targeted preferentially towards mRNAs with unmethylated caps in contrast to the canonical decapping enzyme, Dcp2, which targets mRNAs with a methylated cap. Capped but unmethylated mRNAs generated in yeast cells with a defect in the methyltransferase gene are more stable in a rai1-gene-disrupted background. Moreover, rai1Δ yeast cells with wild-type capping enzymes show significant accumulation of mRNAs with 5'-end capping defects under nutritional stress conditions of glucose starvation or amino acid starvation. These findings provide evidence that 5'-end capping is not a constitutive process that necessarily always proceeds to completion and demonstrates that Rai1 has an essential role in clearing mRNAs with aberrant 5'-end caps. We propose that Rai1 is involved in an as yet uncharacterized quality control process that ensures mRNA 5'-end integrity by an aberrant-cap-mediated mRNA decay mechanism.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Jiao X, Xiang S, Oh C, Martin CE, Tong L, Kiledjian M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference