Reference: Koestler T, et al. (2010) FACT: functional annotation transfer between proteins with similar feature architectures. BMC Bioinformatics 11:417

Reference Help

Abstract


Background: The increasing number of sequenced genomes provides the basis for exploring the genetic and functional diversity within the tree of life. Only a tiny fraction of the encoded proteins undergoes a thorough experimental characterization. For the remainder, bioinformatics annotation tools are the only means to infer their function. Exploiting significant sequence similarities to already characterized proteins, commonly taken as evidence for homology, is the prevalent method to deduce functional equivalence. Such methods fail when homologs are too diverged, or when they have assumed a different function. Finally, due to convergent evolution, functional equivalence is not necessarily linked to common ancestry. Therefore complementary approaches are required to identify functional equivalents.

Results: We present the Feature Architecture Comparison Tool http://www.cibiv.at/FACT to search for functionally equivalent proteins. FACT uses the similarity between feature architectures of two proteins, i.e., the arrangements of functional domains, secondary structure elements and compositional properties, as a proxy for their functional equivalence. A scoring function measures feature architecture similarities, which enables searching for functional equivalents in entire proteomes. Our evaluation of 9,570 EC classified enzymes revealed that FACT, using the full feature, set outperformed the existing architecture-based approaches by identifying significantly more functional equivalents as highest scoring proteins. We show that FACT can identify functional equivalents that share no significant sequence similarity. However, when the highest scoring protein of FACT is also the protein with the highest local sequence similarity, it is in 99% of the cases functionally equivalent to the query. We demonstrate the versatility of FACT by identifying a missing link in the yeast glutathione metabolism and also by searching for the human GolgA5 equivalent in Trypanosoma brucei.

Conclusions: FACT facilitates a quick and sensitive search for functionally equivalent proteins in entire proteomes. FACT is complementary to approaches using sequence similarity to identify proteins with the same function. Thus, FACT is particularly useful when functional equivalents need to be identified in evolutionarily distant species, or when functional equivalents are not homologous. The most reliable annotation transfers, however, are achieved when feature architecture similarity and sequence similarity are jointly taken into account.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Koestler T, von Haeseler A, Ebersberger I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference