Reference: Ferreon AC, et al. (2010) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179-204

Reference Help

Abstract


Intrinsically disordered proteins (IDPs) (also referred to as natively unfolded proteins) play critical roles in a variety of cellular processes such as transcription and translation and also are linked to several human diseases. Biophysical studies of IDPs present unusual experimental challenges due in part to their broad conformational heterogeneity and potentially complex binding-induced folding behavior. By minimizing the averaging over an ensemble (which is typical of most conventional experiments), single-molecule fluorescence (SMF) techniques have recently begun to add advanced capabilities for structural studies to the experimental arsenal of IDP investigators. Here, we briefly discuss a few common SMF methods that are particularly useful for IDP studies, including SMF resonance energy transfer and fluorescence correlation spectroscopy, along with site-specific protein-labeling methods that are essential for application of these methods to IDPs. We then present an overview of a few studies in this area, highlighting how SMF methods are being used to gain valuable information about two amyloidogenic IDPs, the Parkinson's disease-linked alpha-synuclein and the NM domain of the yeast prion protein Sup 35. SMF experiments provided new information about the proteins' rapidly fluctuating IDP forms, and the complex alpha-synuclein folding behavior upon its binding to lipid and membrane mimics. We anticipate that SMF and single-molecule methods, in general, will find broad application for structural and mechanistic studies of a wide variety of IDPs, both of their disordered conformations, and their ordered ensembles relevant for function and disease.

Reference Type
Journal Article
Authors
Ferreon AC, Moran CR, Gambin Y, Deniz AA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference