Reference: Memisevic V, et al. (2010) Complementarity of network and sequence information in homologous proteins. J Integr Bioinform 7(3)

Reference Help

Abstract


Traditional approaches for homology detection rely on finding sufficient similarities between protein sequences. Motivated by studies demonstrating that from non-sequence based sources of biological information, such as the secondary or tertiary molecular structure, we can extract certain types of biological knowledge when sequence-based approaches fail, we hypothesize that protein-protein interaction (PPI) network topology and protein sequence might give insights into different slices of biological information. Since proteins aggregate to perform a function instead of acting in isolation, analyzing complex wirings around a protein in a PPI network could give deeper insights into the protein's role in the inner working of the cell than analyzing sequences of individual genes. Hence, we believe that one could lose much information by focusing on sequence information alone. We examine whether the information about homologous proteins captured by PPI network topology differs and to what extent from the information captured by their sequences. We measure how similar the topology around homologous proteins in a PPI network is and show that such proteins have statistically significantly higher network similarity than nonhomologous proteins. We compare these network similarity trends of homologous proteins with the trends in their sequence identity and find that network similarities uncover almost as much homology as sequence identities. Although none of the two methods, network topology and sequence identity, seems to capture homology information in its entirety, we demonstrate that the two might give insights into somewhat different types of biological information, as the overlap of the homology information that they uncover is relatively low. Therefore, we conclude that similarities of proteins' topological neighborhoods in a PPI network could be used as a complementary method to sequence-based approaches for identifying homologs, as well as for analyzing evolutionary distance and functional divergence of homologous proteins.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Memisevic V, Milenkovic T, Przulj N
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference