Reference: Mittal N, et al. (2009) Dissecting the expression dynamics of RNA-binding proteins in posttranscriptional regulatory networks. Proc Natl Acad Sci U S A 106(48):20300-5

Reference Help

Abstract


In eukaryotic organisms, gene expression requires an additional level of coordination that links transcriptional and posttranslational processes. Messenger RNAs have traditionally been viewed as passive molecules in the pathway from transcription to translation. However, it is now clear that RNA-binding proteins (RBPs) play an important role in cellular homeostasis by controlling gene expression at the posttranscriptional level. Here, we show that RBPs, as a class of proteins, show distinct gene expression dynamics compared to other protein coding genes in the eukaryote Sacchoromyces cerevisiae. We find that RBPs generally exhibit high protein stability, translational efficiency, and protein abundance but their encoding transcripts tend to have a low half-life. We show that RBPs are also most often posttranslationally modified, indicating their potential for regulation at the protein level to control diverse cellular processes. Further analysis of the RBP-RNA interaction network showed that the number of distinct targets bound by an RBP (connectivity) is strongly correlated with its protein stability, translational efficiency, and abundance. We also note that RBPs show less noise in their expression in a population of cells, with highly connected RBPs showing significantly lower noise. Our results indicate that highly connected RBPs are likely to be tightly regulated at the protein level as significant changes in their expression may bring about large-scale changes in global expression levels by affecting their targets. These observations might explain the molecular basis behind the cause of a number of disorders associated with misexpression or mutation in RBPs. Future studies uncovering the posttranscriptional networks in higher eukaryotes can help our understanding of the link between different levels of regulation and their role in pathological conditions.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Mittal N, Roy N, Babu MM, Janga SC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference