Reference: Gustafsson M, et al. (2009) Genome-wide system analysis reveals stable yet flexible network dynamics in yeast. IET Syst Biol 3(4):219-28

Reference Help

Abstract


Recently, important insights into static network topology for biological systems have been obtained, but still global dynamical network properties determining stability and system responsiveness have not been accessible for analysis. Herein, we explore a genome-wide gene-to-gene regulatory network based on expression data from the cell cycle in Saccharomyces cerevisae (budding yeast). We recover static properties like hubs (genes having several out-going connections), network motifs and modules, which have previously been derived from multiple data sources such as whole-genome expression measurements, literature mining, protein-protein and transcription factor binding data. Further, our analysis uncovers some novel dynamical design principles; hubs are both repressed and repressors, and the intra-modular dynamics are either strongly activating or repressing whereas inter-modular couplings are weak. Finally, taking advantage of the inferred strength and direction of all interactions, we perform a global dynamical systems analysis of the network. Our inferred dynamics of hubs, motifs and modules produce a more stable network than what is expected given randomised versions. The main contribution of the repressed hubs is to increase system stability, while higher order dynamic effects (e.g. module dynamics) mainly increase system flexibility. Altogether, the presence of hubs, motifs and modules induce few flexible modes, to which the network is extra sensitive to an external signal. We believe that our approach, and the inferred biological mode of strong flexibility and stability, will also apply to other cellular networks and adaptive systems.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gustafsson M, Hörnquist M, Björkegren J, Tegnér J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference