Reference: Spasic I, et al. (2009) KiPar, a tool for systematic information retrieval regarding parameters for kinetic modelling of yeast metabolic pathways. Bioinformatics 25(11):1404-11

Reference Help

Abstract


Motivation: Most experimental evidence on kinetic parameters is buried in the literature, whose manual searching is complex, time consuming and partial. These shortcomings become particularly acute in systems biology, where these parameters need to be integrated into detailed, genome-scale, metabolic models. These problems are addressed by KiPar, a dedicated information retrieval system designed to facilitate access to the literature relevant for kinetic modelling of a given metabolic pathway in yeast. Searching for kinetic data in the context of an individual pathway offers modularity as a way of tackling the complexity of developing a full metabolic model. It is also suitable for large-scale mining, since multiple reactions and their kinetic parameters can be specified in a single search request, rather than one reaction at a time, which is unsuitable given the size of genome-scale models.

Results: We developed an integrative approach, combining public data and software resources for the rapid development of large-scale text mining tools targeting complex biological information. The user supplies input in the form of identifiers used in relevant data resources to refer to the concepts of interest, e.g. EC numbers, GO and SBO identifiers. By doing so, the user is freed from providing any other knowledge or terminology concerned with these concepts and their relations, since they are retrieved from these and cross-referenced resources automatically. The terminology acquired is used to index the literature by mapping concepts to their synonyms, and then to textual documents mentioning them. The indexing results and the previously acquired knowledge about relations between concepts are used to formulate complex search queries aiming at documents relevant to the user's information needs. The conceptual approach is demonstrated in the implementation of KiPar. Evaluation reveals that KiPar performs better than a Boolean search. The precision achieved for abstracts (60%) and full-text articles (48%) is considerably better than the baseline precision (44% and 24%, respectively). The baseline recall is improved by 36% for abstracts and by 100% for full text. It appears that full-text articles are a much richer source of information on kinetic data than are their abstracts. Finally, the combined results for abstracts and full text compared with the curated literature provide high values for relative recall (88%) and novelty ratio (92%), suggesting that the system is able to retrieve a high proportion of new documents.

Availability: Source code and documentation are available at: (http://www.mcisb.org/resources/kipar/).

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Spasic I, Simeonidis E, Messiha HL, Paton NW, Kell DB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference