Reference: Carmo-Fonseca M, et al. (1991) Human nucleoporin p62 and the essential yeast nuclear pore protein NSP1 show sequence homology and a similar domain organization. Eur J Cell Biol 55(1):17-30

Reference Help

Abstract


NSP1 is an essential nuclear pore protein in yeast. We observed that anti-NSP1 antibodies label mammalian nuclear pore complexes and recognize nucleoporin p62. Also peptide antibodies raised against the NSP1 carboxy-terminal end cross-react with p62, a conserved component of the nuclear pore complex in higher eukaryotes. To further analyze the structural and functional similarity between NSP1 and mammalian nucleoporins, we cloned and sequenced nucleoporin p62 from a HeLa cDNA library. Human p62 consists of a carboxy-terminal domain homologous to the essential yeast NSP1 carboxy-terminal domain and an amino-terminal half resembling the repetitive middle domain of NSP1. The full-length p62 and a fusion protein consisting of cytosolic mouse dihydrofolate reductase (DHFR) and the p62 carboxy-terminal domain were expressed in transfected HeLa cells. Only overexpressed full-length p62, but not the DHFR-C-p62 fusion protein, binds wheat germ agglutinin (WGA). This suggests that modification by N-acetylglucosamine is mainly restricted to the repetitive amino-terminal half of p62 and implies a role of this type of repetitive sequences in nuclear transport. In the transfected HeLa cells, the DHFR-C-p62 fusion protein forms patchy aggregates that accumulate at the nuclear periphery but are also scattered through the cytoplasm. It is suggested that nucleoporin p62 may be targeted and anchored to the pore complex via its carboxy-terminal domain which reveals a hydrophobic heptad repeat organization similar to that found in lamins and other intermediate filament proteins.

Reference Type
Comparative Study | Journal Article
Authors
Carmo-Fonseca M, Kern H, Hurt EC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference