Reference: Casanova M, et al. (2008) Inhibition of active nuclear transport is an intrinsic trigger of programmed cell death in trypanosomatids. Cell Death Differ 15(12):1910-20

Reference Help

Abstract


The link between nucleocytoplasmic transport and apoptosis remains controversial. Nucleocytoplasmic exchange of molecules seems indeed essential for the initiation and execution of the apoptotic programme; but inhibition of nuclear transport factors may also represent a powerful apoptotic trigger. The GTPase Ran (together with its partners), first discovered to be essential in nucleocytoplasmic transport, has multiple key functions in cell biology, and particularly in spindle assembly, kinetochore function and nuclear envelope assembly. Among the Ran partners studied, NTF2 appears to be solely involved in nucleocytoplasmic transport. Here, we localised Ran and several of its partners, RanBP1, CAS and NTF2, at the nuclear membrane in the trypanosomatid Leishmania major. Remarkably, these proteins fused to GFP decorated a perinuclear 'collar' of about 15 dots, colocalising at nuclear pore complexes with the homologue of nucleoporin Sec13. In the other trypanosomatid Trypanosoma brucei, RNAi knockdown of the expression of the corresponding genes resulted in an apoptosis-like phenomenon. These phenotypes show that Ran and its partners have a key function in trypanosomatids like they have in mammals. Our data, notably those about TbNTF2 RNAi, support the idea that active nucleocytoplasmic transport is not essential for the initiation and execution of apoptosis, and, rather, the impairment of this transport constitutes an intrinsic signal for triggering PCD.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Casanova M, Portalès P, Blaineau C, Crobu L, Bastien P, Pagès M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference