Reference: Paladugu SR, et al. (2008) Mining protein networks for synthetic genetic interactions. BMC Bioinformatics 9:426

Reference Help

Abstract


Background: The local connectivity and global position of a protein in a protein interaction network are known to correlate with some of its functional properties, including its essentiality or dispensability. It is therefore of interest to extend this observation and examine whether network properties of two proteins considered simultaneously can determine their joint dispensability, i.e., their propensity for synthetic sick/lethal interaction. Accordingly, we examine the predictive power of protein interaction networks for synthetic genetic interaction in Saccharomyces cerevisiae, an organism in which high confidence protein interaction networks are available and synthetic sick/lethal gene pairs have been extensively identified.

Results: We design a support vector machine system that uses graph-theoretic properties of two proteins in a protein interaction network as input features for prediction of synthetic sick/lethal interactions. The system is trained on interacting and non-interacting gene pairs culled from large scale genetic screens as well as literature-curated data. We find that the method is capable of predicting synthetic genetic interactions with sensitivity and specificity both exceeding 85%. We further find that the prediction performance is reasonably robust with respect to errors in the protein interaction network and with respect to changes in the features of test datasets. Using the prediction system, we carried out novel predictions of synthetic sick/lethal gene pairs at a genome-wide scale. These pairs appear to have functional properties that are similar to those that characterize the known synthetic lethal gene pairs.

Conclusion: Our analysis shows that protein interaction networks can be used to predict synthetic lethal interactions with accuracies on par with or exceeding that of other computational methods that use a variety of input features, including functional annotations. This indicates that protein interaction networks could plausibly be rich sources of information about epistatic effects among genes.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Paladugu SR, Zhao S, Ray A, Raval A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference