Reference: Gomes RA, et al. (2008) Protein glycation in vivo: functional and structural effects on yeast enolase. Biochem J 416(3):317-26

Reference Help

Abstract


Protein glycation is involved in structure and stability changes that impair protein functionality, which is associated with several human diseases, such as diabetes and amyloidotic neuropathies (Alzheimer's disease, Parkinson's disease and Andrade's syndrome). To understand the relationship of protein glycation with protein dysfunction, unfolding and beta-fibre formation, numerous studies have been carried out in vitro. All of these previous experiments were conducted in non-physiological or pseudo-physiological conditions that bear little to no resemblance to what may happen in a living cell. In vivo, glycation occurs in a crowded and organized environment, where proteins are exposed to a steady-state of glycation agents, namely methylglyoxal, whereas in vitro, a bolus of a suitable glycation agent is added to diluted protein samples. In the present study, yeast was shown to be an ideal model to investigate glycation in vivo since it shows different glycation phenotypes and presents specific protein glycation targets. A comparison between in vivo glycated enolase and purified enolase glycated in vitro revealed marked differences. All effects regarding structure and stability changes were enhanced when the protein was glycated in vitro. The same applies to enzyme activity loss, dimer dissociation and unfolding. However, the major difference lies in the nature and location of specific advanced glycation end-products. In vivo, glycation appears to be a specific process, where the same residues are consistently modified in the same way, whereas in vitro several residues are modified with different advanced glycation end-products.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gomes RA, Oliveira LM, Silva M, Ascenso C, Quintas A, Costa G, Coelho AV, Sousa Silva M, Ferreira AE, Ponces Freire A, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference