Reference: Serero A, et al. (2008) Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity. DNA Repair (Amst) 7(8):1262-75

Reference Help

Abstract


Cadmium (Cd(2+)) is a ubiquitous environmental pollutant and human carcinogen. The molecular basis of its toxicity remains unclear. Here, to identify the landscape of genes and cell functions involved in cadmium resistance, we have screened the Saccharomyces cerevisiae deletion collection for mutants sensitive to cadmium exposure. Among the 4866 ORFs tested, we identified 73 genes whose inactivation confers increased sensitivity to Cd(2+). Most were previously unknown to play a role in cadmium tolerance and we observed little correlation between the cadmium sensitivity of a gene deletant and the variation in the transcriptional activity of that gene in response to cadmium. These genes encode proteins involved in various functions: intracellular transport, stress response and gene expression. Analysis of the sensitive phenotype of our "Cd(2+)-sensitive mutant collection" to arsenite, cobalt, mercury and H(2)O(2) revealed 17 genes specifically involved in cadmium-induced response. Among them we found RAD27 and subsequently DNA2 which encode for proteins involved in DNA repair and replication. Analysis of the Cd(2+)-sensitivity of RAD27 (rad27-G67S) and DNA2 (dna2-1) separation of function alleles revealed that their activities necessary for Okazaki fragment processing are essential in conditions of cadmium exposure. Consistently, we observed that wild-type cells exposed to cadmium display an enhanced frequency of forward mutations to canavanine resistance and minisatellite destabilisation. Taken together these results provide a global picture of the genetic requirement for cadmium tolerance in yeast and strongly suggest that DNA replication, through the step of Okazaki fragment processing, is a target of cadmium toxicity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Serero A, Lopes J, Nicolas A, Boiteux S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference