Reference: Frederick RL, et al. (2008) Multiple pathways influence mitochondrial inheritance in budding yeast. Genetics 178(2):825-37

Reference Help

Abstract


Yeast mitochondria form a branched tubular network. Mitochondrial inheritance is tightly coupled with bud emergence, ensuring that daughter cells receive mitochondria from mother cells during division. Proteins reported to influence mitochondrial inheritance include the mitochondrial rho (Miro) GTPase Gem1p, Mmr1p, and Ypt11p. A synthetic genetic array (SGA) screen revealed interactions between gem1Delta and deletions of genes that affect mitochondrial function or inheritance, including mmr1Delta. Synthetic sickness of gem1Delta mmr1Delta double mutants correlated with defective mitochondrial inheritance by large buds. Additional studies demonstrated that GEM1, MMR1, and YPT11 each contribute to mitochondrial inheritance. Mitochondrial accumulation in buds caused by overexpression of either Mmr1p or Ypt11p did not depend on Gem1p, indicating these three proteins function independently. Physical linkage of mitochondria with the endoplasmic reticulum (ER) has led to speculation that distribution of these two organelles is coordinated. We show that yeast mitochondrial inheritance is not required for inheritance or spreading of cortical ER in the bud. Moreover, Ypt11p overexpression, but not Mmr1p overexpression, caused ER accumulation in the bud, revealing a potential role for Ypt11p in ER distribution. This study demonstrates that multiple pathways influence mitochondrial inheritance in yeast and that Miro GTPases have conserved roles in mitochondrial distribution.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Frederick RL, Okamoto K, Shaw JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference