Reference: Hirasaki M, et al. (2008) Protein phosphatase Siw14 controls intracellular localization of Gln3 in cooperation with Npr1 kinase in Saccharomyces cerevisiae. Gene 409(1-2):34-43

Reference Help

Abstract


Saccharomyces cerevisiae Deltasiw14 disruptant exhibits caffeine sensitivity. To understand the function of Siw14, double disruptants for SIW14 and each of 102 viable protein kinases (PKase) genes were constructed and examined for suppression of caffeine sensitivity based on the premise that the sensitivity was caused either by accumulation of an unknown phosphorylated Siw14 substrate(s) or by depletion of an unphosphorylated substrate(s) of Siw14 in the Deltasiw14 disruptant. Among 102 pkase disruptions, only one, Deltanpr1, suppressed the caffeine sensitivity of the Deltasiw14 disruptant. Because Gln3 (a phosphorylated transcriptional activator)-dependent transcription is induced by disruption of NPR1, we further examined the effect of disruption and overexpression of GLN3 on the caffeine sensitivity of the Deltasiw14 disruptant. Disruption of GLN3 was found to partially suppress the caffeine sensitivity of the Deltasiw14 disruptant, while overexpression of GLN3 in wild-type cells caused caffeine sensitivity, providing the first evidence that Siw14 functions in the Gln3 regulatory network. We also found that, unlike in a wild-type background, Gln3 accumulates in the nucleus whether cells are exposed or not to caffeine in the Deltasiw14 disruptant, and that this nuclear localization was abolished by disruption of NPR1. Interestingly, the level of Gln3 phosphorylation in both the Deltasiw14 and Deltanpr1 disruptants decreased relative to wild type, independent of exposure to caffeine. We conclude that Siw14 controls the intracellular localization of Gln3 in combination with Npr1, and one of the causes for the caffeine sensitivity of the Deltasiw14 disruptant was an accumulation of dephosphorylated Gln3 in the nucleus.

Reference Type
Journal Article
Authors
Hirasaki M, Kaneko Y, Harashima S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference