Reference: Ivanova E, et al. (2008) Assembly of the mitochondrial Tim9-Tim10 complex: a multi-step reaction with novel intermediates. J Mol Biol 375(1):229-39

Reference Help

Abstract


Protein assembly is a crucial process in biology, because most proteins must assemble into complexes to perform their function in the cell. The mitochondrial Tim9-Tim10 translocase complex, located in the mitochondrial intermembrane space, plays an essential chaperone-like role during the import of mitochondrial membrane proteins. The complex consists of three molecules of each subunit arranged alternately in a ring-shaped structure. While structural and functional studies have indicated a dynamic nature of the complex, little is known about the assembly process and the mechanism of its function. Here we investigated the assembly process of yeast Tim9-Tim10 complex in real time, using stopped-flow fluorescence coupled with Trp mutagenesis, and stopped-flow light scattering techniques. We show that different parts of the proteins are assembled at different rates; also assembly intermediates consisting four subunits arise transiently before formation of the final hexameric Tim9-Tim10 complex. Interestingly, the assembly intermediate has more organised N-terminal helices that form an inner layer of the complex, but not the C-terminal helices, which form the outer layer of the complex. In addition, using analytical ultracentrifugation techniques, we show that Tim9 forms a homo-dimer while Tim10 is a monomer. A four-step assembly pathway of Tim9-Tim10 complex, involving formation of hetero-dimer and tetramer assembly intermediates, is proposed. This study provides the first description of the assembly pathway of this translocase complex, and insight into the mechanism of its function.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ivanova E, Jowitt TA, Lu H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference