Reference: Cheng C, et al. (2007) Significant and systematic expression differentiation in long-lived yeast strains. PLoS One 2(10):e1095

Reference Help

Abstract


Background: Recent studies suggest that the regulation of longevity may be partially conserved in many eukaryotes ranging from yeast to mammals. The three yeast mutants sch9Delta, ras2Delta, tor1Delta show extended chronological life span up to three folds. Our aim is to dissect the mechanisms that lead to the yeast life span extension.

Methodology/principal findings: We obtain gene expression profiles of sch9Delta, ras2Delta, tor1Delta as well as that for a wild type at day 2.5 in SDC medium using Affymetrix Yeast2.0 arrays. To accurately estimate the expression differentiation between the wild type and the long-lived mutants, we use sub-array normalization followed by a variant of the median-polishing summarization. The results are validated by the probe sets of S. pombe on the same chips. To translate the differentiation into changes of biological activities, we make statistical inference by integrating the expression profiles with biological gene subsets defined by Gene Ontology, KEGG pathways, and cellular localization of proteins. Other than subset-versus-other comparisons, we also make local comparisons between two directly-related gene subsets such as cytosolic and mitochondrial ribosomes. Our consensus is obtained by cross-examination of these inferences. The significant and systematic differentiation in the three long-lived strains includes: lower transcriptional activities; down-regulation of TCA cycle and oxidative phosphorylation versus up-regulation of the KEGG pathway Glycolysis/Gluconeogenesis; the overall reduction of mitochondrial activities. We also report some different expression patterns such as reduction of the activities relating to mitosis in ras2Delta.

Conclusions/significance: The modification of energy pathways and modification of compartment activities such as down-regulation of mitochondrial ribosome proteins versus up-regulation of cytosolic ribosome proteins are directly associated with the life span extension in yeast. The results provide a new and systematic S. cerevisiae version of the free radical theory from the perspective of functional genomics.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Cheng C, Fabrizio P, Ge H, Wei M, Longo VD, Li LM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference