Reference: Krebs JE (2007) Moving marks: dynamic histone modifications in yeast. Mol Biosyst 3(9):590-7

Reference Help

Abstract


Posttranslational modifications of histones, both in the tails and in the globular cores, alter the functional landscape of chromatin by modulating DNA accessibility and chromatin stability, and by providing an enormous variety of alternative interaction surfaces for trans-acting factors. Complex patterns of acetylation, methylation, phosphorylation, ubiquitylation (and others) result in spatial domains of meaningful chromatin modifications, often referred to as the histone code. Whole genome studies have uncovered striking genome-wide patterns of specific modifications, and individual modifications have been linked to a variety of functional consequences for transcription, replication and repair. A key aspect of the role of histone modifications, however, is their dynamic nature-the precise timing of the addition and removal of specific marks is an essential part of the histone code. This review will highlight examples from budding yeast that illustrate the importance of these dynamic modifications in controlling transcription and repair.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Review
Authors
Krebs JE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence