Reference: Tóth A, et al. (2007) Mitotic exit in two dimensions. J Theor Biol 248(3):560-73

Reference Help

Abstract


Metaphase of mitosis is brought about in all eukaryotes by activation of cylin-dependent kinase (Cdk1), whereas exit from mitosis requires down-regulation of Cdk1 activity and dephosphorylation of its target proteins. In budding yeast, the completion of mitotic exit requires the release and activation of the Cdc14 protein-phosphatase, which is kept inactive in the nucleolus during most of the cell cycle. Activation of Cdc14 is controlled by two regulatory networks called FEAR (Cdc fourteen early anaphase release) and MEN (mitotic exit network). We have shown recently that the anaphase promoting protease (separase) is essential for Cdc14 activation, thereby it makes mitotic exit dependent on execution of anaphase. Based on this finding, we have proposed a new model for mitotic exit in budding yeast. Here we explain the essence of the model by phaseplane analysis, which reveals two underlying bistable switches in the regulatory network. One bistable switch is caused by mutual activation (positive feedback) between Cdc14 activating MEN and Cdc14 itself. The mitosis-inducing Cdk1 activity inhibits the activation of this positive feedback loop and thereby controlling this switch. The other irreversible switch is generated by a double-negative feedback (mutual antagonism) between mitosis inducing Cdk1 activity and its degradation machinery (APC(Cdh1)). The Cdc14 phosphatase helps turning this switch in favor of APC(Cdh1) side. Both of these bistable switches have characteristic thresholds, the first one for Cdk1 activity, while the second for Cdc14 activity. We show that the physiological behaviors of certain cell cycle mutants are suggestive for those Cdk1 and Cdc14 thresholds. The two bistable switches turn on in a well-defined order. In this paper, we explain how the activation of Cdc20 (which causes the activation of separase and a decrease of Cdk1 kinase activity) provides an initial trigger for the activation of the MEN-Cdc14 positive feedback loops, which in turn, flips the second irreversible Cdk-APC(Cdh1) switch on the APC(Cdh1) side).

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tóth A, Queralt E, Uhlmann F, Novák B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference