Reference: Fagarasanu A, et al. (2007) Maintaining peroxisome populations: a story of division and inheritance. Annu Rev Cell Dev Biol 23:321-44

Reference Help

Abstract


Eukaryotic cells divide their metabolic labor between functionally distinct, membrane-enveloped organelles, each precisely tailored for a specific set of biochemical reactions. Peroxisomes are ubiquitous, endoplasmic reticulum-derived organelles that perform requisite biochemical functions intimately connected to lipid metabolism. Upon cell division, cells have to strictly control peroxisome division and inheritance to maintain an appropriate number of peroxisomes in each cell. Peroxisome division follows a specific sequence of events that include peroxisome elongation, membrane constriction, and peroxisome fission. Pex11 proteins mediate the elongation step of peroxisome division, whereas dynamin-related proteins execute the final fission. The mechanisms responsible for peroxisome membrane constriction are poorly understood. Molecular players involved in peroxisome inheritance are just beginning to be elucidated. Inp1p and Inp2p are two recently identified peroxisomal proteins that perform antagonistic functions in regulating peroxisome inheritance in budding yeast. Inp1p promotes the retention of peroxisomes in mother cells and buds by attaching peroxisomes to as-yet-unidentified cortical structures. Inp2p is implicated in the motility of peroxisomes by linking them to the Myo2p motor, which then propels their movement along actin cables. The functions of Inp1p and Inp2p are cell cycle regulated and coordinated to ensure a fair distribution of peroxisomes at cytokinesis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Fagarasanu A, Fagarasanu M, Rachubinski RA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference