Reference: Geertman JM, et al. (2006) Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res 6(8):1193-203

Reference Help

Abstract


Anaerobic Saccharomyces cerevisiae cultures reoxidize the excess NADH formed in biosynthesis via glycerol production. This study investigates whether cometabolism of formate, a well-known NADH-generating substrate in aerobic cultures, can increase glycerol production in anaerobic S. cerevisiae cultures. In anaerobic, glucose-limited chemostat sultures (D=0.10 h(-1)) with molar formate-to-glucose ratios of 0 to 0.5, only a small fraction of the formate added to the cultures was consumed. To investigate whether incomplete formate consumption was by the unfavourable kinetics of yeast formate dehydrogenase (high k(M) for formate at low intracellular NAD(+) concentrations) strains were constructed in which the FDH1 and/or GPD2 genes, encoding formate dehydrogenase and glycerol-3-phosphate dehydrogenase, respectively, were overexpressed. The engineered strains consumed up to 70% of the formate added to the feed, thereby increasing glycerol yields to 0.3 mol mol(-1) glucose at a formate-to-glucose ratio of 0.34. In all strains tested, the molar ratio between formate consumption and additional glycerol production relative to a reference culture equalled one. While demonstrating that that format can be use to enhance glycerol yields in anaerobic S. cerevisiae cultures, This study also reveals kinetic constraints of yeast formate dehydrogenase as an NADH-generating system in yeast mediated reduction processes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Geertman JM, van Dijken JP, Pronk JT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference