Reference: Babu MM, et al. (2006) Estimating the prevalence and regulatory potential of the telomere looping effect in yeast transcription regulation. Cell Cycle 5(20):2354-63

Reference Help

Abstract


Telomeres have long been implicated in the regulation of gene expression. Some studies have reported that telomere looping effect (TLE) can juxtapose genes and regulatory sequences that are far apart and facilitate long-distance control of gene expression. In this work, we report a detailed investigation on the prevalence and regulatory potential of TLE on a genomic scale by assembling data on protein-DNA interactions from several large-scale ChIp-chip experiments in Saccharomyces cerevisiae. Analysis of the assembled data revealed that a statistically significant number of DNA segments that were inferred to be bound by ten or more transcription factors in these experiments physically mapped to the ends of several chromosomes (19 of 32 chromosome ends). For the 83 transcription factors that were inferred to interact with these DNA segments, we found a statistically significant skew in the distribution of their internal binding sites over the length of the entire chromosome, such that more than expected binding events occurred proximal to chromosomal ends than elsewhere. Taken together these observations suggest that the telomere looping effect is their most likely explanation and imply that a notable fraction of the internally bound yeast transcription factors potentially interact with looped back telomeres. Further, we also identified several components of the basal transcriptional machinery that are also frequently linked to these chromosome end segments, strengthening the proposal for a direct interaction between the chromosome ends and internally located transcriptional complexes. We observed that certain chromatin factors might participate in the TLE and potentially modulate gene expression by chromatin modifications such as histone deacetylation. Our findings provide the first computational evidence for a significant role of long-range regulatory interactions due to telomere looping. Based on these observations, we also propose that genome-wide chromatin immunoprecipitation data might be useful to systematically uncover long-range chromatin looping effects in gene expression.

Reference Type
Journal Article | Research Support, N.I.H., Intramural
Authors
Babu MM, Balaji S, Iyer LM, Aravind L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference