Reference: Burgers PM (1991) Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem 266(33):22698-706

Reference Help

Abstract


Lag times in DNA synthesis by DNA polymerase delta holoenzyme were due to ATP-mediated formation of an initiation complex on the primed DNA by the polymerase with the proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C). Lag time analysis showed that high affinity binding of RF-C to the primer terminus required PCNA and that this complex was recognized by the polymerase. The formation of stable complexes was investigated through their isolation by Bio-Gel A-5m filtration. A stable complex of RF-C and PCNA on primed single-stranded mp18 DNA was isolated when these factors were preincubated with the DNA and with ATP, or, less efficiently with ATP gamma S. These and additional experiments suggest that ATP binding promotes the formation of a labile complex of RF-C with PCNA at the primer terminus, whereas its hydrolysis is required to form a stable complex. Subsequently, DNA polymerase delta binds to either complex in a replication competent fashion without further energy requirement. DNA polymerase epsilon did not associate stably with RF-C and PCNA onto the DNA, but its transient participation with these cofactors into a holoenzyme-like initiation complex was inferred from its kinetic properties and replication product analysis. The kinetics of the elongation phase at 30 degrees, 110 nucleotides/s by DNA polymerase delta holoenzyme and 50 nucleotides/s by DNA polymerase epsilon holoenzyme, are in agreement with in vivo rates of replication fork movement in yeast. A model for the eukaryotic replication fork involving both DNA polymerase delta and epsilon is proposed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Burgers PM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference