Reference: Balaji S, et al. (2006) Uncovering a hidden distributed architecture behind scale-free transcriptional regulatory networks. J Mol Biol 360(1):204-12

Reference Help

Abstract


Numerous studies in both prokaryotes and eukaryotes have shown that, under standard growth conditions, less than 20% of the protein-coding genes are essential for survival. This suggests that biological systems have evolved to have a high degree of robustness to mutational disruptions that can affect the majority of their genes. This mutational robustness could arise either due to redundancy, i.e. direct backup, or due to distributed architecture, i.e. indirect backup where multiple genes contribute to the functioning of a process in the system. Despite clear evidence for direct backup, the prevalence of indirect backup is poorly understood. In this study, we reveal the existence of a hidden distributed architecture behind the scale-free transcriptional regulatory network of yeast by applying a unique network transformation procedure and show that the network is tolerant even to mutations that disrupt regulatory hubs. Contrary to what is generally accepted, our observation that hubs can be lost or replaced in evolution suggests that this hidden distributed architecture behind scale-free networks protects the overall transcriptional program of the organism from mutations affecting major regulatory hubs. We show that the distributed architecture has been provided by an unexpectedly large number of coordinating partners for any regulatory protein. On the basis of these findings, we propose that the existence of such architecture can allow organisms to explore the adaptive landscape in changing environments by providing the plasticity required to reprogram levels of expression of specific genes that may enhance survival. Thus, an "over-engineered" backup system in the form of distributed architecture is likely to be a major determinant of the "evolvability" of the gene expression in organisms faced with environmental diversity.

Reference Type
Journal Article | Research Support, N.I.H., Intramural
Authors
Balaji S, Iyer LM, Aravind L, Babu MM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference