Reference: Whitford D, et al. (1991) The role of the internal hydrogen bond network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5. Eur J Biochem 200(2):359-67

Reference Help

Abstract


An internal water molecule (designated WAT166) is found in iso-1-cytochrome c which is part of a redox-state-dependent hydrogen bond network. The position of this water molecule with respect to the polypeptide fold can be altered or even displaced by site-directed mutagenesis leading to structural perturbations and associated changes in redox potential. Using saturation transfer 1H-NMR methods, this study measures changes in the electron transfer reactivity for three variants of yeast iso-1-cytochromes c in which the position of this water molecule is altered. In particular, the reverse electron transfer rate is measured within a complex formed between either wild-type or variant yeast iso-1-cytochromes c and the tryptic fragment of bovine liver microsomal cytochrome b5. For three variants of yeast iso-1-cytochrome c the rate constants measured by saturation transfer are wild-type (Asn52, E0 = 270 mV, kex = 0.3 s-1), Asn52----Ala (E0 = 240 mV, kex = 0.6 s-1), Asn52----Ile (E0 = 220 mV, kex = 1.0 s-1). The first-order rates are compared with that of a fourth variant Phe82----Gly which has been measured previously (E0 = 220 mV, kex = 0.7 s-1). An analysis of the variation in the observed cross exchange rate using Marcus theory shows that these changes can be predicted quantitatively by the shift in redox potential that accompanies mutagenesis. So, although the perturbation of the internal water molecule by mutagenesis alters both the structure and redox potential of cytochrome c, surprisingly it does not significantly influence the intrinsic electron transfer reactivity of the protein. Studies of the activation parameters suggests that a variation of temperature changes both delta G* and also the prefactor. These data are discussed in terms of models involving dynamic molecular recognition between proteins.

Reference Type
Journal Article
Authors
Whitford D, Gao Y, Pielak GJ, Williams RJ, McLendon GL, Sherman F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference