Reference: Lehrach WP, et al. (2006) A regularized discriminative model for the prediction of protein-peptide interactions. Bioinformatics 22(5):532-40

Reference Help

Abstract


Motivation: Short well-defined domains known as peptide recognition modules (PRMs) regulate many important protein-protein interactions involved in the formation of macromolecular complexes and biochemical pathways. Since high-throughput experiments like yeast two-hybrid and phage display are expensive and intrinsically noisy, it would be desirable to more specifically target or partially bypass them with complementary in silico approaches. In the present paper, we present a probabilistic discriminative approach to predicting PRM-mediated protein-protein interactions from sequence data. The model is motivated by the discriminative model of Segal and Sharan as an alternative to the generative approach of Reiss and Schwikowski. In our evaluation, we focus on predicting the interaction network. As proposed by Williams, we overcome the problem of susceptibility to over-fitting by adopting a Bayesian a posteriori approach based on a Laplacian prior in parameter space.

Results: The proposed method was tested on two datasets of protein-protein interactions involving 28 SH3 domain proteins in Saccharmomyces cerevisiae, where the datasets were obtained with different experimental techniques. The predictions were evaluated with out-of-sample receiver operator characteristic (ROC) curves. In both cases, Laplacian regularization turned out to be crucial for achieving a reasonable generalization performance. The Laplacian-regularized discriminative model outperformed the generative model of Reiss and Schwikowski in terms of the area under the ROC curve on both datasets. The performance was further improved with a hybrid approach, in which our model was initialized with the motifs obtained with the method of Reiss and Schwikowski.

Availability: Software and supplementary material is available from http://lehrach.com/wolfgang/dmf.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lehrach WP, Husmeier D, Williams CK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference