Reference: Antunovics Z, et al. (2005) Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae. FEMS Yeast Res 5(12):1141-50

Reference Help

Abstract


Considerable amounts of molecular and genetic data indicate that interspecific hybridisation may not be rare among natural strains of Saccharomyces sensu stricto. Although a post-zygotic barrier operating during meiosis usually prevents the production of viable spores, stable hybrids can arise which can even evolve into distinct species. This study was aimed to analyse the genome of a fertile Saccharomyces cerevisiae x S. uvarum hybrid and monitor its changes over four filial generations of viable spores. The molecular genetic analysis demonstrated that the two species did not contribute equally to the formation and stabilisation of the hybrid genome. S. cerevisiae provided the mitochondrial DNA and the more stable part of the nuclear genome. The S. uvarum part of the hybrid nuclear genome became progressively smaller by loosing complete chromosomes and genetic markers in the course of successive meiotic divisions. Certain S. uvarum chromosomes were eliminated and/or underwent rearrangements in interactions with S. cerevisiae chromosomes. Numerous S. uvarum chromosomes acquired S. cerevisiae telomere sequences. The gradual elimination of large parts of the S. uvarum genome was associated with a progressive increase of sporulation efficiency. We hypothesise that this sort of genomic alterations may contribute to speciation in Saccharomyces sensu stricto.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Antunovics Z, Nguyen HV, Gaillardin C, Sipiczki M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference