Reference: Gross E, et al. (1992) Anti-Cdc25 antibodies inhibit guanyl nucleotide-dependent adenylyl cyclase of Saccharomyces cerevisiae and cross-react with a 150-kilodalton mammalian protein. Mol Cell Biol 12(6):2653-61

Reference Help

Abstract


The CDC25 gene product of the yeast Saccharomyces cerevisiae has been shown to be a positive regulator of the Ras protein. The high degree of homology between yeast RAS and the mammalian proto-oncogene ras suggests a possible resemblance between the mammalian regulator of Ras and the regulator of the yeast Ras (Cdc25). On the basis of this assumption, we have raised antibodies against the conserved C-terminal domain of the Cdc25 protein in order to identify its mammalian homologs. Anti-Cdc25 antibodies raised against a beta-galactosidase-Cdc25 fusion protein were purified by immunoaffinity chromatography and were shown by immunoblotting to specifically recognize the Cdc25 portion of the antigen and a truncated Cdc25 protein, also expressed in bacteria. These antibodies were shown both by immunoblotting and by immunoprecipitation to recognize the CDC25 gene product in wild-type strains and in strains overexpressing Cdc25. The anti-Cdc25 antibodies potently inhibited the guanyl nucleotide-dependent and, approximately 3-fold less potently, the Mn(2+)-dependent adenylyl cyclase activity in S. cerevisiae. The anti-Cdc25 antibodies do not inhibit cyclase activity in a strain harboring RAS2Val-19 and lacking the CDC25 gene product. These results support the view that Cdc25, Ras2, and Cdc35/Cyr1 proteins are associated in a complex. Using these antibodies, we were able to define the conditions to completely solubilize the Cdc25 protein. The results suggest that the Cdc25 protein is tightly associated with the membrane but is not an intrinsic membrane protein, since only EDTA at pH 12 can solubilize the protein. The anti-Cdc25 antibodies strongly cross-reacted with the C-terminal domain of the Cdc25 yeast homolog, Sdc25. Most interestingly, these antibodies also cross-reacted with mammalian proteins of approximately 150 kDa from various tissues of several species of animals. These interactions were specifically blocked by the beta-galactosidase-Cdc25 fusion protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gross E, Marbach I, Engelberg D, Segal M, Simchen G, Levitzki A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference