Reference: Blank LM, et al. (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5(6-7):545-58

Reference Help

Abstract


In a quantitative comparative study, we elucidated the glucose metabolism in fourteen hemiascomycetous yeasts from the Genolevures project. The metabolic networks of these different species were first established by (13)C-labeling data and the inventory of the genomes. This information was subsequently used for metabolic-flux ratio analysis to quantify the intracellular carbon flux distributions in these yeast species. Firstly, we found that compartmentation of amino acid biosynthesis in most species was identical to that in Saccharomyces cerevisiae. Exceptions were the mitochondrial origin of aspartate biosynthesis in Yarrowia lipolytica and the cytosolic origin of alanine biosynthesis in S. kluyveri. Secondly, the control of flux through the TCA cycle was inversely correlated with the ethanol production rate, with S. cerevisiae being the yeast with the highest ethanol production capacity. The classification between respiratory and respiro-fermentative metabolism, however, was not qualitatively exclusive but quantitatively gradual. Thirdly, the flux through the pentose phosphate (PP) pathway was correlated to the yield of biomass, suggesting a balanced production and consumption of NADPH. Generally, this implies the lack of active transhydrogenase-like activities in hemiascomycetous yeasts under the tested growth condition, with Pichia angusta as the sole exception. In the latter case, about 40% of the NADPH was produced in the PP pathway in excess of the requirements for biomass production, which strongly suggests the operation of a yet unidentified mechanism for NADPH reoxidation in this species. In most yeasts, the PP pathway activity appears to be driven exclusively by the demand for NADPH.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Blank LM, Lehmbeck F, Sauer U
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference