Reference: Ionescu CN, et al. (2004) The yeast rRNA biosynthesis factor Ebp2p is also required for efficient nuclear division. Yeast 21(14):1219-32

Reference Help

Abstract


Molecular genetic analysis of the yeast Ebp2 protein has revealed that it is an essential, nucleolar protein that functions in the rRNA biosynthesis pathway. Temperature-sensitive ebp2-1 mutants are defective in the processing of the 27 SA precursor rRNA, and the point substitutions that disrupt this activity cluster towards the central, more highly conserved region of the Ebp2 protein. We report here that other ebp2 mutants exhibit deficiencies associated with defects in chromosome segregation. Yeast cells bearing a 50 amino acid C-terminal truncation allele (ebp2 delta C50) display a slow-growth phenotype and exhibit an increased percentage of cells with the nucleus positioned at the bud neck. The ebp2-1 and ebp2 delta C50 alleles genetically complement each other, and ebp2 delta C50 mutants exhibit nuclear division defects that are distinct from the rRNA biosynthesis-related phenotypes of ebp2-1 mutants. Cytological and FACS analysis of the ebp2 delta C50 deletion mutants indicate that the chromosome segregation related activities of the Ebp2 protein are monitored by Mad2p, a mitotic checkpoint protein. The finding that yeast Ebp2p functions in nuclear division is consistent with the growing body of evidence that supports the role that human EBP2 plays in chromosome segregation.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Ionescu CN, Origanti S, McAlear MA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference